The University of Jordan

Faculty:PharmacyDepartment:Pharmaceutics and Pharmaceutical TechnologyProgram:BSc. of PharmacyAcademic Year/ Semester:2013/2014/ 1st semesterCourse Name (Course Number):Physical Pharmacy – (Physical Pharmacy)

Credit hours	1	Level	3 rd Year	Pre- requisite	Pharmaceutical Compounding (1202232)
Coordinator/ Lecturer		Office number		Office phone	
Course website		E-mail		Place	

Office hours:					
Day/Time	Sunday	Monday	Tuesday	Wednesday	Thursday

Course Description

A practical course in physical pharmacy focusing on observing physcichemical phenomena at work in pharmaceutical dosage forms and systems

Learning Objectives

- 1. To provide students with an understanding of the physico-chemical principles at work in pharmaceutical systems.
- 2. To provide students with the ability to utilize these principles in the design of active drugs and pharmaceutical dosage forms.
- 3. To provide the students with the ability to analyze the relationship between the physicochemical principles, pharmaceutical formulations and biological activity of drugs.
- 4. To act as a link between the basic courses (General Chemistry, Organic Chemistry, Biochemistry and Physiology) and the more applied courses (Industrial Pharmacy, Biopharmaceutics and Pharmacokinetics).

Intended Learning Outcomes (ILOs):

Successful completion of the course should lead to the following outcomes:

1. Knowledge and understanding:

- 1.1. To be able to explain the significance of distribution phenomena in pharmaceutical systems and in the bioavailability of drugs.
- 1.2. To estimate the risk and importance of drug complexation.
- 1.3. To discuss the different modes of drug decomposition.
- 1.4. To understand the contribution of diffusional processes process of drug absorption.
- 1.5. To understand the origin and the consequences of the interfacial phenomenon.

2. Intellectual Skills:

- 2.1. To associate the extraction process variables with the theory of distribution to achieve an efficient extraction.
- 2.2. To predict possible complexation related problems in pharmaceutical systems based on chemical structures.
- 2.3. To analyze pharmaceutical degradation data and relate it to drug stability.
- 2.4. To correlate permeability and diffusion properties of drug material to bioavailability.
- 2.5. To correlate the concepts of interfacial phenomena with the formulation and stability of colloidal preparations.

3. Subject Specific Skills:

- 3.1. To be able to develop an extraction procedure.
- 3.2. To be able study and analyze drug complexes.
- 3.3. To be able to estimate shelf lives and suitable storage conditions for a drug formulation.
- 3.4. To specify the factors affecting the bioavailability of drug substances.
- 3.5. To relate the stability of colloidal dosage forms to the interfacial properties of its components.

4. Transferable Skills:

- 4.1. To be able to meet deadlines for homework's and assignments
- 4.2. To be able to work effectively in a team
- 4.3. To be able to handle experimental data and draw scientific conclusions

ILOs: Learning and Evaluation Methods

ILO/s	Learning Methods	Evaluation Methods
		1) Exams:
	 Lectures Tutorials Laboratory Assignments reports and Projects Case studies 	Are to be submitted in the

Course Contents

Content	Reference	Lecture #	ILO
Solubility, Miscibility, Distribution Law and its pharmaceutical relevance		Lecture 1	
Effect of ionic dissociation and molecular		Lecture	-
association on distribution		2	_
Extraction, solubility and partitioning coefficient,		Lecture	
preservative action in oil-water systems		3	_
Definition of complexes, donor-acceptor		Lecture	
interactions, Lewis acid-base system, types of complexes		4	
Metal ion complexes, chelates and organic		Lecture	
molecular complexes		5	
Inclusion complexes, pharmaceutical applications		Lecture	
and quantitative analysis of complexation		6	
(stoichiometric ratio determination and association constants			
Methods of continuous variation, distribution		Lecture	-
method, solubility method, pH titration method and		7	
spectroscopy and charge transfer complexation.		-	
Protein binding and its equilibria, effects on drug		Lecture	-
therapy, analysis of protein binding (equilibrium		8	4
dialysis, dynamic dialysis and ultrafiltration)			'n
First Exam		Lecture 9	1, 2,
Definition or reaction rate, rate constant, order of		Lecture	-
reaction, pharmaceutical relevance, concentration		10	
dependency and determination of order.			
Rate law, units of rate constants, zero order		Lecture	
reactions and apparent zero order reactions.		11	_
First order reactions and second order reactions,		Lecture	
integrated rate laws and half-life.		12	-
Complex reactions kinetics (reversible, parallel and		Lecture	
series reactions).		13	-
Effect of temperature on reaction rates and		Lecture 15	
Arrhenius equation. Classical Collision theory and Transitional State		Lecture	-
Theory.		16	
Effect of solvent, dielectric constant and ionic		Lecture	-
strength on rates		17	
Pharmaceutical stability problems (hydrolysis,		Lecture	-
oxidation, photodegradation,)		18	
Solid-state kinetics and determination of shelf life.		Lecture	1
		19	

Diffusion definition, mechanisms, pharmaceutical applications.	Lecture 20
Ficks first law, second law and steady state diffusion.	Lecture 21
Definition of dissolution and dissolution rate, Noyes- Whitney equation.	Lecture 23
Dissolution rate determination, cube root law, drug release from tablets.	Lecture 24
Diffusion controlled drug delivery (reservoir systems).	Lecture 25
Diffusion controlled drug delivery (matrix systems) and the Higuchi equation.	Lecture 26
Gastrointestinal absorption of drugs, percutaneous absorption of drugs.	Lecture 27
Concepts of surfaces, interfaces, surface and interfacial tension.	Lecture 28
Wetting of solid surfaces, spreading of liquids over liquid substrates.	Lecture 29
Adsorption at solid surfaces, adsorption isotherms.	Lecture 30

Learning Methodology

- Lectures 1.
- Tutorials 2.
- 3. Laboratory
- Assignments, reports and Projects 4.
- 5. Case studies

Projects and Assignments To be determined

Evaluation

1) Exams:

First Exam: 5th week

Second Exam: 10th week

Final Exam 14th week

2) **Projects and Assignments:**

Are to be submitted in the lecture following the lecture they were given at unless otherwise instructed.

Main Reference/s:

- 1. Physico-Chemical Principles in Pharmacy, Florence, A. T. and Attwood, D., 1985, McMillan Publishing, London.
- 2. Pharmaceutics: The Science of Dosage Form Design, Aulton, M. E., Ed., 1988, ELBS, London.
- 3. Pharmaceutical Calculations, Stoklosa, M. J. and Ansel, H. C., 1988, Lea and Febiger, USA.
- 4. Bently's Textbook of Pharmaceutics, Rawlins, E. A., 8th Edition, 1984, ELBS, London.
- 5. Ramington's Pharmaceutical Sciences.